Stokes waves with constant vorticity: Numerical computation

Vera Mikyoung Hur
with Sergey Dyachenko
Special thanks to ICERM

(Image from Teles da Silva and Peregrine (1988))

Stokes waves are

- traveling waves
- periodic
- at the surface of an incompressible inviscid fluid = water
- two dimensional
- acted on by gravity (no surface tension)
- infinitely deep or with a rigid flat bed

In the irrotational setting

Stokes conjectured

Amick, Fraenkel, and Toland (1982) proved that such a corner wave exists.

Recently, further advances - analytical and numerical - based on Babenko's equation:

$$
\lambda^{2} \mathscr{H} y^{\prime}=y+y \mathscr{H} y^{\prime}+\mathscr{H}\left(y y^{\prime}\right)
$$

$y=$ fluid surface,$\quad \lambda=$ Froude number,$\quad \mathscr{H}=$ Hilbert transform.

In the rotational setting

Constantin and Strauss (2004) worked out global bifurcation for general vorticities.
Solutions do not permit critical layers, or internal stagnation.
Wahlén (2009) observed them for constant vorticities.

For constant vorticities

Constantin, Strauss, and Varvaruca (2014) worked out global bifurcation, permitting overhanging, critical layers, and internal stagnation.

They conjectured that the limiting wave is:

By the way, the proof is non-constructive.
Our goal is to numerically study the conjecture.

Earlier works include

- Simmen and Saffman (1985),
- Teles da Silva and Peregrine (1988),
- Vanden-Broeck (1994, 1996),

See also

- Vasan and Oliveras (2014),
- Ribeiro, Milewski, and Nachbin (2017),...

Formulation

(Figures from Teles da Silva and Peregrine (1983))
Let's write the velocity $(-\omega y-c, 0)+\nabla \phi$,
$\omega=$ constant vorticity,$\quad c=$ wave speed.
The problem is written:

$$
\begin{array}{ll}
\Delta \phi=0 & \text { in fluid, } \\
\psi-\frac{1}{2} \omega y^{2}-c y=0 & \text { at surface, } \\
\frac{1}{2}\left(\phi_{x}-\omega y-c\right)^{2}+\frac{1}{2} \phi_{y}^{2}+g y=B & \text { at surface } \\
\phi_{y}=0 & \text { at bed, }
\end{array}
$$

$\psi=$ harmonic conjugate of $\phi, \quad B=$ Bernoulli constant.

Reformulation via conformal mapping

physical domain

conformal domain

The problem becomes

$$
\frac{\left(c+\omega\left(y+y \mathscr{T} y^{\prime}-\mathscr{T}\left(y y^{\prime}\right)\right)\right)^{2}}{\left(1+\mathscr{T} y^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}=B+c^{2}-2 g y .
$$

Definition. $\mathscr{T}\left(e^{i k u}\right)=-i \operatorname{coth}(k d) e^{i k u} \quad$ for $k \neq 0$ an integer. Formally, $\mathscr{T} \rightarrow \mathscr{H}$ as $d \rightarrow \infty$.

Reformulation to Babenko type

Use the fact:
$(\mathscr{T}+i) f$ is the boundary value of a holomorphic function in
$-d<v<0$ whose imaginary part $=0$ at $v=-d$.

The problem is written:

$$
\begin{aligned}
& \left(c^{2}+2 B\right) \mathscr{T} y^{\prime}-g y-c \omega y-g\left(y \mathscr{T} y^{\prime}+\mathscr{T}\left(y y^{\prime}\right)\right) \\
& \quad-\frac{1}{2} \omega^{2}\left(y^{2}+\mathscr{T}\left(y^{2} y^{\prime}\right)+y^{2} \mathscr{T} y^{\prime}-2 y \mathscr{T}\left(y y^{\prime}\right)\right)=\langle\mathrm{LHS}\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle\left(c+\omega\left(y+y \mathscr{T} y^{\prime}-\mathscr{T}\left(y y^{\prime}\right)\right)\right)^{2}\right\rangle \\
& \quad=\left\langle\left(B+c^{2}-2 g y\right)\left(\left(1+\mathscr{T} y^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)\right\rangle
\end{aligned}
$$

subject to

$$
\left\langle y\left(1+\mathscr{T} y^{\prime}\right)\right\rangle=0
$$

Sample waves

How to compare with earlier works?

We reproduce Simmen and Saffman (1985):

For Teles da Silva and Peregrine (1988), $d=\langle y\rangle+h$.

Limiting wave \neq highest wave

(Figure from Simmen's thesis (1984))

Effects of large positive vorticities

Waves (left) and singularities (right) for $\omega=6, d=1$ and $c=15.80$ (red) and $c=32.00$ (green).

New limiting wave?

Some open problems

- c is bounded throughout the solution curve?
- $c^{2}+2 B \geqslant 0$ throughout the solution curve?
- Any C^{1} solution is real analytic?

