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FICCKE 1.5. X surfwe shear wavr occurring naturally in backwash on a beach. 

described in Peregrine (1974). That model was stimulated by the observation of steep 
large rounded waves in the backwash of waves incident on beaches. Such a wave 
arising naturally is shown in the photograph of figure 15. Another surface shear wave 
also described in Peregrine (1974) is the ‘wave hydraulic jump’ (see also discussion 
of that paper). Both of these waves are easily reproduced in the laboratory, and are 
usually almost stationary on a fast moving strcam. They occur over fixed beds. but 
also seem to have a counterpart in supercritical flow over antidunes on a mobile 
bed. 

Peregrine’s (1974) model does not depend on a specific vorticity distribution but 
simply characterizes the thin sheet of surface water by its momentum flux and 
considers its deflection due to hydrostatic pressure in the almost stagnant water 
beneath it. The ordinary differential equation so obtained for the shape of the wave 
is the same as that for the finite bending of a thin beam or elastiea. This gives an easy 
way of comparing Peregrine‘s solution with the figures in this paper : just take a piece 
of paper or card and bend it whilst holding it a t  each side. Comparison with figure 14 
will show that most of the wave closely follows such a curve. 

The pressurc field in figure 14(b) is easily interpreted in terms of a high-speed 
surface flow. A high transverse pressure gradient is required to turn the flow sharply 
at  the bast of the wave, hence the substantial excess pressures on the bed. Then over 
the main portion of the wave the pressure falls below atmospheric as in Peregrine’s 
(1974) model, and ‘sucks’ the surface jet around in a curve which is tighter than the 
corresponding free-fall parabola. As the jet ‘lands’ near the bed once again high 
pressure gradients turn it back into a horizontal flow. To some extent the constant 
vortieity flow here may be a better model than Peregrine’s for very steep waves over 
closed eddies. This is due to the Prandtl-Batchelor result that in two-dimensional 
high-Reynolds-number flow steady recirculating regions with closed streamlines 
have constant vorticity. 
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(Image from Teles da Silva and Peregrine (1988))



Stokes waves are

• traveling waves

• periodic

• at the surface of an incompressible inviscid fluid = water

• two dimensional

• acted on by gravity (no surface tension)

• infinitely deep or with a rigid flat bed



In the irrotational setting

Stokes conjectured
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(Image from Wikipedia)

Amick, Fraenkel, and Toland (1982) proved that such a corner
wave exists.

Recently, further advances — analytical and numerical — based on
Babenko’s equation:

λ2H y1 “ y ` yH y1 `H pyy1q,

y “ fluid surface, λ “ Froude number, H “ Hilbert transform.



In the rotational setting

Constantin and Strauss (2004) worked out global bifurcation for
general vorticities.
Solutions do not permit critical layers, or internal stagnation.

Wahlén (2009) observed them for constant vorticities.
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Fig. 1. This figure illustrates the streamlines in the moving frame in the case ω < 0 and λ− > 0. The dashed curve is the critical
level, where ψy vanishes, and the solid dots are stagnation points. Notice also the two streamlines connecting the stagnation
points at 0 and 2π/k.

Fig. 2. This figure illustrates the streamlines in the moving frame in the case ω < 0 and λ− = 0.

assume that ψλ,y(y) = −ωy − λ = 0 for some critical level y = y0 ∈ [0,1]. When ω < 0 we have
to require that 0 ! λ ! −ω, giving y0 = λ/|ω|, while if ω > 0 we have y0 = |λ|/ω for −ω ! λ ! 0.
These two cases are totally symmetric, since to any water wave (η,ψ) with constant vorticity ω there
corresponds one with constant vorticity −ω, namely (η,−ψ). Hence, we might as well assume that
ω < 0 and that λ " 0. Recalling that bifurcation can only occur when λ ≠ −ω, we assume from now
on that 0 ! λ < −ω. This means in particular that we should choose λ = λ− , since λ− < −ω < λ+ .

Theorem 4.1. Suppose that ω < 0, that k is such that λ− > 0 and that τ > 0 is sufficiently small. Then,
within one period, the streamlines are qualitatively described by Fig. 1. In particular, there is critical layer
of height O (τ 1/2) with closed streamlines. The critical layer is separated from the rest of the fluid by two
streamlines connecting consecutive stagnation points. If λ− = 0, then the streamlines are as in Fig. 2.

Before proving the theorem we need two lemmas.
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For constant vorticities

Constantin, Strauss, and Varvaruca (2014) worked out global
bifurcation, permitting overhanging, critical layers, and internal
stagnation.

They conjectured that the limiting wave is:
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Figure 8. Waves with stagnation points and corners of 120◦ at their crests: overhang-
ing profiles (on the right) and profiles that are graphs (on the left).

Figure 9. Overhanging wave with self-intersections on the trough line.

6. Further results and conjectures

In a sequel to this paper, we will prove the following results:

• If K becomes unbounded in R × R × C2,α
2π (R), then v′ is unbounded in L2

2π(R);
• For all waves in K, the free surface S is a real-analytic curve.

Furthermore, we have a conjecture about the furthest boundary of the global curve K that is more
specific than Theorem 5. Our conjecture is that at this boundary we reach

• either a wave with a stagnation point and a corner of 120◦ at its crest whose surface may be
overhanging or a graph (see Figure 8)

• or a wave that has no stagnation point but its surface is overhanging with self-intersections on
the trough line (see Figure 9).

This conjecture is supported by some analysis and by the numerical simulations in [21,49].
It would also be interesting to extend our analysis in Section 5 of the nature of a flow beneath the

wave profile from the case of small-amplitude waves to larger waves.

Appendix A. The periodic Hilbert transform Cd on a strip

We discuss the conjugation and Dirichlet-Neumann operators acting on periodic functions on a
strip. The Dirichlet-Neumann operator Gd for the strip Rd is defined by

(A.1)
(
Gd(w)

)
(x) = Wy(x, 0), w ∈ Cp,α

2π (R) with p ≥ 1 an integer,

where W ∈ Cp,α
2π (Rd) is the unique solution to the boundary-value problem

(A.2)

⎧
⎨
⎩

∆W = 0 in Rd,

W (x, 0) = w(x), x ∈ R,

W (x, −d) = 0, x ∈ R .
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⎩
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By the way, the proof is non-constructive.

Our goal is to numerically study the conjecture.



Earlier works include

• Simmen and Saffman (1985),

• Teles da Silva and Peregrine (1988),

• Vanden-Broeck (1994, 1996), ....

See also

• Vasan and Oliveras (2014),

• Ribeiro, Milewski, and Nachbin (2017),...



Formulation
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FIGURE 1. Sketches indicating wave direction and shear profile. On the left (i) is the configuration 
we use, and on the right (ii) the equivalent wave stationary on a stream. ( a )  Wave propagating 
upstream, positive vorticity. ( b )  Wave propagating downstream, negative vorticity. 

Using (2.9) and comparing with the undisturbed flow we can interpret (2.10) as 
showing that the waves travel symmetrically with respect to thc flow a t  a depth 

c: tanh (kh)  W=-= 
29 2k ’ 

(2.11) 

which gives a measure of the depth of water which influences the wave properties, or 
‘wave depth’. The limiting values of W for large and small kh are 6k-’ and ih 
respectively. The right-hand side of (2.10) shows that shear increases the wave speed 
of linearized waves. 

A critical layer occurs in the flow if a t  any depth 

c = -5Y, 
let h, = c / <  be the critical layer depth. Substitution in the linear dispersion equation 
(2.8) and use of the wave depth, W ,  gives 

h, = W + W ( l + & ) ,  

for linear waves. 
Thus if then: is a critical layer it is always a t  a depth greater than 2W, and then 

only ncar 2W for strong shcars. Critical laycrs only occur for waves propagating 
‘ upstream ’, and when 

(2.12) 

In  order to fix ideas we shall only consider positive values of c and k but allow 5 
to have either sign. For convenience of description we shall refer to ‘upstream’ and 
‘downstream ’ in the sense of waves propagating on a flowing stream with maximum 
velocity a t  the surface. See figure 1 (a) in which our configuration for 5 positive is 
shown and tho effect of a stream giving wave propagation ‘upstream’. Similarly 
figure l ( 6 )  shows 5 negative and the corresponding ‘downstream’ propagation. The 
downstream case is equivalent to downwind propagation for the case of a shear 
generated by the wind. 
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downstream “ ´ vorticity upstream “ ` vorticity

(Figures from Teles da Silva and Peregrine (1983))

Let’s write the velocity p´ωy ´ c, 0q `∇φ,
ω “ constant vorticity, c “ wave speed.

The problem is written:

∆φ “ 0 in fluid,
ψ ´ 1

2ωy
2 ´ cy “ 0 at surface,

1
2pφx ´ ωy ´ cq

2 ` 1
2φ

2
y ` gy “ B at surface,

φy “ 0 at bed,

ψ “ harmonic conjugate of φ, B “ Bernoulli constant.



Reformulation via conformal mapping

fluid

air
Physical Domain Conformal Domain

z = x+iy w = u +iv

fluid

air
Physical Domain Conformal Domain

z = x+iy w = u +iv

y “ ´h v “ ´d

physical domain conformal domain

The problem becomes

pc` ωpy ` yT y1 ´T pyy1qqq2

p1`T y1q2 ` py1q2
“ B ` c2 ´ 2gy.

Definition. T peikuq “ ´i cothpkdqeiku for k ‰ 0 an integer.
Formally, T Ñ H as dÑ8.



Reformulation to Babenko type

Use the fact:

pT ` iqf is the boundary value of a holomorphic function in
´d ă v ă 0 whose imaginary part “ 0 at v “ ´d.

The problem is written:

pc2 ` 2BqT y1 ´ gy ´ cωy ´ gpyT y1 `T pyy1qq
´1

2ω
2py2 `T py2y1q ` y2T y1 ´ 2yT pyy1qq “ xLHSy

and

xpc` ωpy ` yT y1 ´T pyy1qqq2y
“ xpB ` c2 ´ 2gyqpp1`T y1q2 ` py1q2qy

subject to

xyp1`T y1qy “ 0.



Sample waves

wave speed
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How to compare with earlier works?

We reproduce Simmen and Saffman (1985):
wave speed

steepness; here d “ 8

For Teles da Silva and Peregrine (1988), d “ xyy ` h.



Limiting wave ‰ highest wave

(Figure from Simmen’s thesis (1984))



Effects of large positive vorticities
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New limiting wave?
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Some open problems

• c is bounded throughout the solution curve?

• c2 ` 2B ě 0 throughout the solution curve?

• Any C1 solution is real analytic?


